3.1062 \(\int \frac{2-5 x}{x^{5/2} \sqrt{2+5 x+3 x^2}} \, dx\)

Optimal. Leaf size=175 \[ -\frac{\sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{x}\right ),-\frac{1}{2}\right )}{\sqrt{3 x^2+5 x+2}}-\frac{25 \sqrt{x} (3 x+2)}{3 \sqrt{3 x^2+5 x+2}}+\frac{25 \sqrt{3 x^2+5 x+2}}{3 \sqrt{x}}-\frac{2 \sqrt{3 x^2+5 x+2}}{3 x^{3/2}}+\frac{25 \sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} E\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{3 \sqrt{3 x^2+5 x+2}} \]

[Out]

(-25*Sqrt[x]*(2 + 3*x))/(3*Sqrt[2 + 5*x + 3*x^2]) - (2*Sqrt[2 + 5*x + 3*x^2])/(3*x^(3/2)) + (25*Sqrt[2 + 5*x +
 3*x^2])/(3*Sqrt[x]) + (25*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqrt[x]], -1/2])/(3*Sqrt[2
 + 5*x + 3*x^2]) - (Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcTan[Sqrt[x]], -1/2])/Sqrt[2 + 5*x + 3
*x^2]

________________________________________________________________________________________

Rubi [A]  time = 0.112355, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {834, 839, 1189, 1100, 1136} \[ -\frac{25 \sqrt{x} (3 x+2)}{3 \sqrt{3 x^2+5 x+2}}+\frac{25 \sqrt{3 x^2+5 x+2}}{3 \sqrt{x}}-\frac{2 \sqrt{3 x^2+5 x+2}}{3 x^{3/2}}-\frac{\sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} F\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{\sqrt{3 x^2+5 x+2}}+\frac{25 \sqrt{2} (x+1) \sqrt{\frac{3 x+2}{x+1}} E\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{3 \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[(2 - 5*x)/(x^(5/2)*Sqrt[2 + 5*x + 3*x^2]),x]

[Out]

(-25*Sqrt[x]*(2 + 3*x))/(3*Sqrt[2 + 5*x + 3*x^2]) - (2*Sqrt[2 + 5*x + 3*x^2])/(3*x^(3/2)) + (25*Sqrt[2 + 5*x +
 3*x^2])/(3*Sqrt[x]) + (25*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqrt[x]], -1/2])/(3*Sqrt[2
 + 5*x + 3*x^2]) - (Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcTan[Sqrt[x]], -1/2])/Sqrt[2 + 5*x + 3
*x^2]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 839

Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2, Subst[Int[(f +
 g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1100

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b -
q)*x^2)*Sqrt[(2*a + (b + q)*x^2)/(2*a + (b - q)*x^2)]*EllipticF[ArcTan[Rt[(b - q)/(2*a), 2]*x], (-2*q)/(b - q)
])/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^
2 - 4*a*c, 0]

Rule 1136

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b -
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*Sqrt[(2*a + (
b + q)*x^2)/(2*a + (b - q)*x^2)]*EllipticE[ArcTan[Rt[(b - q)/(2*a), 2]*x], (-2*q)/(b - q)])/(2*c*Sqrt[a + b*x^
2 + c*x^4]), x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{2-5 x}{x^{5/2} \sqrt{2+5 x+3 x^2}} \, dx &=-\frac{2 \sqrt{2+5 x+3 x^2}}{3 x^{3/2}}-\frac{1}{3} \int \frac{25+3 x}{x^{3/2} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{2 \sqrt{2+5 x+3 x^2}}{3 x^{3/2}}+\frac{25 \sqrt{2+5 x+3 x^2}}{3 \sqrt{x}}+\frac{1}{3} \int \frac{-3-\frac{75 x}{2}}{\sqrt{x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{2 \sqrt{2+5 x+3 x^2}}{3 x^{3/2}}+\frac{25 \sqrt{2+5 x+3 x^2}}{3 \sqrt{x}}+\frac{2}{3} \operatorname{Subst}\left (\int \frac{-3-\frac{75 x^2}{2}}{\sqrt{2+5 x^2+3 x^4}} \, dx,x,\sqrt{x}\right )\\ &=-\frac{2 \sqrt{2+5 x+3 x^2}}{3 x^{3/2}}+\frac{25 \sqrt{2+5 x+3 x^2}}{3 \sqrt{x}}-2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2+5 x^2+3 x^4}} \, dx,x,\sqrt{x}\right )-25 \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{2+5 x^2+3 x^4}} \, dx,x,\sqrt{x}\right )\\ &=-\frac{25 \sqrt{x} (2+3 x)}{3 \sqrt{2+5 x+3 x^2}}-\frac{2 \sqrt{2+5 x+3 x^2}}{3 x^{3/2}}+\frac{25 \sqrt{2+5 x+3 x^2}}{3 \sqrt{x}}+\frac{25 \sqrt{2} (1+x) \sqrt{\frac{2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{3 \sqrt{2+5 x+3 x^2}}-\frac{\sqrt{2} (1+x) \sqrt{\frac{2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt{x}\right )|-\frac{1}{2}\right )}{\sqrt{2+5 x+3 x^2}}\\ \end{align*}

Mathematica [C]  time = 0.160035, size = 148, normalized size = 0.85 \[ \frac{22 i \sqrt{2} \sqrt{\frac{1}{x}+1} \sqrt{\frac{2}{x}+3} x^{5/2} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{2}{3}}}{\sqrt{x}}\right ),\frac{3}{2}\right )-2 \left (3 x^2+5 x+2\right )-25 i \sqrt{2} \sqrt{\frac{1}{x}+1} \sqrt{\frac{2}{x}+3} x^{5/2} E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{2}{3}}}{\sqrt{x}}\right )|\frac{3}{2}\right )}{3 x^{3/2} \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 - 5*x)/(x^(5/2)*Sqrt[2 + 5*x + 3*x^2]),x]

[Out]

(-2*(2 + 5*x + 3*x^2) - (25*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(5/2)*EllipticE[I*ArcSinh[Sqrt[2/3]/Sq
rt[x]], 3/2] + (22*I)*Sqrt[2]*Sqrt[1 + x^(-1)]*Sqrt[3 + 2/x]*x^(5/2)*EllipticF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3
/2])/(3*x^(3/2)*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 115, normalized size = 0.7 \begin{align*}{\frac{1}{18} \left ( 69\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticF} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ) x-25\,\sqrt{6\,x+4}\sqrt{3+3\,x}\sqrt{6}\sqrt{-x}{\it EllipticE} \left ( 1/2\,\sqrt{6\,x+4},i\sqrt{2} \right ) x+450\,{x}^{3}+714\,{x}^{2}+240\,x-24 \right ){x}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{3\,{x}^{2}+5\,x+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2-5*x)/x^(5/2)/(3*x^2+5*x+2)^(1/2),x)

[Out]

1/18*(69*(6*x+4)^(1/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x-25*(6*x+4)^(1
/2)*(3+3*x)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x+450*x^3+714*x^2+240*x-24)/(3*x^2
+5*x+2)^(1/2)/x^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{5 \, x - 2}{\sqrt{3 \, x^{2} + 5 \, x + 2} x^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)/x^(5/2)/(3*x^2+5*x+2)^(1/2),x, algorithm="maxima")

[Out]

-integrate((5*x - 2)/(sqrt(3*x^2 + 5*x + 2)*x^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{3 \, x^{2} + 5 \, x + 2}{\left (5 \, x - 2\right )} \sqrt{x}}{3 \, x^{5} + 5 \, x^{4} + 2 \, x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)/x^(5/2)/(3*x^2+5*x+2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(3*x^2 + 5*x + 2)*(5*x - 2)*sqrt(x)/(3*x^5 + 5*x^4 + 2*x^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - \frac{2}{x^{\frac{5}{2}} \sqrt{3 x^{2} + 5 x + 2}}\, dx - \int \frac{5}{x^{\frac{3}{2}} \sqrt{3 x^{2} + 5 x + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)/x**(5/2)/(3*x**2+5*x+2)**(1/2),x)

[Out]

-Integral(-2/(x**(5/2)*sqrt(3*x**2 + 5*x + 2)), x) - Integral(5/(x**(3/2)*sqrt(3*x**2 + 5*x + 2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{5 \, x - 2}{\sqrt{3 \, x^{2} + 5 \, x + 2} x^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)/x^(5/2)/(3*x^2+5*x+2)^(1/2),x, algorithm="giac")

[Out]

integrate(-(5*x - 2)/(sqrt(3*x^2 + 5*x + 2)*x^(5/2)), x)